

Collision Attacks on MD4

COMP 4140: Intro to Cryptography and Cryptosystems
Fall 2015

Zach Havens Vanessa Reimer
7671770 7691114

havensz@myumanitoba.ca reimerv3@myumanitoba.ca

mailto:pind@myumanitoba.ca
mailto:reimerv3@myumanitoba.ca

Collision Attacks on MD4 1

Table of Contents

1 Introduction and Motivation 2
2 MD4 Algorithm 3
3 Collision Attack 5
4 Differential Cryptanalysis 7
5 Notation 8
6 Dobbertin 9

 6.1 Inner-Almost Collisions 9
 6.2 Completing the Messages 10
 6.3 Success Probability and Theoretical Complexity 11

7 Wang et al. 12
 7.1 Message Difference 12
 7.2 Message Modification 14
 7.3 Theoretical Complexity 15

8 Sasaki et al. 15
 8.1 New Inner Collision and Message Difference 16
 8.2 Theoretical Complexity 17

9 Implementation of Algorithms 19
 9.1 Dobbertin 19
 9.2 Wang et al. 20
 9.3 Sasaki et al. 20

10 Conclusion 21

References 23

List of Figures

Figure 1 Second inner collision for attack by Wang et al. 13

Figure 2 New inner collision proposed by Sasaki et al. 16

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 2

1 Introduction and Motivation

In October 1990, Ronald Rivest proposed a new cryptographic hash function known as the

MD4 message-digest algorithm. Taking in a message of any length, the algorithm produces

a 128-bit hash value. This is done using three rounds, each performing 16 operations on 4

32-bit word buffers. At the time of proposal, it was conjectured that producing two

messages with the same hash value would be computationally infeasible [Rivest, 1991].

The proposal for MD4 came roughly a year after Rivest had first proposed the MD2

message-digest algorithm. MD4 later gave way to the MD5 (proposed in 1992) and MD6

(proposed in 2008) message-digest algorithms. Many other hash functions developed later

on were based off of the ideas behind MD4, such as SHA-1, HAVAL, and RIPEMD.

The first collision attack on MD4 was published in 1991 by Bert den Boer and

Antoon Bosselaers [Boer & Bosselaers, 1992]. Their attack was partial, only considering the

last two rounds of the function. In 1996, Hans Dobbertin published the first full collision

attack on MD4, successfully generating a collision with probability 2-22 for a single trial, or

220 MD4 operations on average to find a collision over multiple trials [Dobbertin, 1996].

Xiaoyun Wang et al. proposed a much more efficient attack in 2005 that finds a collision

with probability 2-2 to 2-6 in less than 28 MD4 operations [Wang et al., 2005]. The most

efficient attack to date was published in 2007 by Yu Sasaki et al., requiring less than 2 MD4

operations to find a collision [Sasaki et al., 2007].

Although MD4 is no longer recommended for use, cryptanalysis of the hashing

function remains important. As many newer hashing functions rely on the techniques used

in MD4, cryptanalysis of MD4 affects the cryptanalysis of these newer hash functions as

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 3

well. Additionally, the knowledge gained from exposing security vulnerabilities of MD4 can

be applied to ensuring or refuting security in the development of new hash functions.

In section 2, the MD4 message digest algorithm is outlined. Background information

on collision attacks and differential cryptanalysis is covered in sections 3 and 4,

respectively. Notation used to describe the algorithms is specified in section 5. A closer

look at three of the main attacks on MD4 follow; Dobbertin in section 6, Wang et al. in

section 7, and Sasaki et al. in section 8. A discussion on the implementations of these three

attacks is in section 9, with the paper concluding in section 10.

2 MD4 Algorithm

As outlined in The MD4 Message Digest Algorithm [Rivest, 1991] and RFC 1320 [Rivest,

1992], the following steps are performed for a given binary message M0 with |M0| ≥ 0 to

produce its 128-bit hash:

Step 1: Append Padding Bits

Pad the message by appending a single ‘1’ bit, followed by a series of ‘0’ bits, until the

length of the message modulo 512 is 448. Padding is done regardless of the length of M0. As

few as 1 bit and up to 512 bits are added to the message, with maximum padding occurring

when |M0| % 512 = 448.

Step 2: Append Length

Append the 64-bit representation of |M0| after the padding applied in step 1. In the case

where |M0| > 264, use only the lower-order 64 bits representing |M0|.

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 4

Note that after completing this step, the length of the message is an exact multiple of

512, with each multiple containing 16 32-bit words.

Step 3: Initialize MD Buffer

Initialize a state buffer as the 4 following 32-bits words, corresponding to the MD4 IV:

 A: 01 23 45 67
 B: 89 AB CD EF
 C: FE DC BA 98
 D: 76 54 32 10

Step 4: Process Message in 16-Word Blocks

Three functions are used when processing the blocks, each taking 3 32-bit words as input

and outputting another 32-bit word:

 F(X, Y, Z) = (X ⋀ Y) ⋁ (¬X ⋀ Z)
 G(X, Y, Z) = (X ⋀ Y) ⋁ (X ⋀ Z) ⋁ (Y ⋀ Z)
 H(X, Y, Z) = X ⊕ Y ⊕ Z

For each of the 16 32-bit word blocks M ∈ M0, perform the following compression

algorithm:

1) Set M to be the current block

2) Save the state buffer values as AA = A, BB = B, CC = C, DD = D

3) Round 1

- Define R1(abcd, k, s) as:

 a = (a + F(b, c, d) + mk) <<< s

- Perform these 16 operations (steps 1 to 16):

 R1(ABCD, 0, 3), R1(DABC, 1, 7), R1(CDAB, 2, 11), R1(BCDA, 3, 19),
 R1(ABCD, 4, 3), R1(DABC, 5, 7), R1(CDAB, 6, 11), R1(BCDA, 7, 19),
 R1(ABCD, 8, 3), R1(DABC, 9, 7), R1(CDAB, 10, 11), R1(BCDA, 11, 19),
 R1(ABCD, 12, 3), R1(DABC, 13, 7), R1(CDAB, 14, 11), R1(BCDA, 15, 19)

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 5

4) Round 2

- Define R2(abcd, k, s) as:

a = (a + G(b, c, d) + mk + 5A827999) <<< s

- Perform these 16 operations (steps 17 to 32):

 R2(ABCD, 0, 3), R2(DABC, 4, 5), R2(CDAB, 8, 9), R2(BCDA, 12, 13),
 R2(ABCD, 1, 3), R2(DABC, 5, 5), R2(CDAB, 9, 9), R2(BCDA, 13, 13),
 R2(ABCD, 2, 3), R2(DABC, 6, 5), R2(CDAB, 10, 9), R2(BCDA, 14, 13),
 R2(ABCD, 3, 3), R2(DABC, 7, 5), R2(CDAB, 11, 9), R2(BCDA, 15, 13)

5) Round 3

- Define R3(abcd, k, s) as:

a = (a + H(b, c, d) + mk + 6ED9EBA1) <<< s

- Perform these 16 operations (steps 33 to 48):

R3(ABCD, 0, 3), R3(DABC, 8, 9), R3(CDAB, 4, 11), R3(BCDA, 12, 15),
 R3(ABCD, 2, 3), R3(DABC, 10, 9), R3(CDAB, 6, 11), R3(BCDA, 14, 15),
 R3(ABCD, 1, 3), R3(DABC, 9, 9), R3(CDAB, 5, 11), R3(BCDA, 13, 15),
 R3(ABCD, 3, 3), R3(DABC, 11, 9), R3(CDAB, 7, 11), R3(BCDA, 15, 15)

6) Add initial values AA, BB, CC, and DD to current values of A, B, C, and D, respectively.

Step 5: Output

The output is defined as the concatenation of A, B, C, D in big endian. The result is 16 bytes

in length, regardless of the size of the input message.

3 Collision Attack

One of the pillars of hashing algorithm security is collision resistance. For a given hash

function, a collision occurs when two different messages produce the same hash value. For

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 6

example, consider the MD4 hashes below that were generated using an implementation of

Wang’s attack from [Stach, 2006].

 M = 588f35088d0eb832f54221d6f329f37b3acd0e29bb46585f9181247c3a071478
 2f6731995cdf4afe1cd47adb98b09c8a06fee1bf0f233febf8e249740c4e1ed7

 M’ = 588f35088d0eb8b2f5422146f329f37b3acd0e29bb46585f9181247c3a071478
 2f6731995cdf4afe1cd47adb98b09c8a06fee0bf0f233febf8e249740c4e1ed7

 MD4(M) = MD4(M’) = 4b278534b323500cb3e60e9c7ae523d9

The messages are not equal but result in the same hash value. The reason that it is

important for a hash function to be collision resistant is because of the potential uses of

colliding messages. Hashing functions are used for things such as digital signatures, HMACs,

and simple checksumming. If two messages are found that collide, one could replace the

other without the signatures, tags, or checksums becoming invalid, despite the fact that the

underlying data has changed. For example, fake web security certificates were created that

were indistinguishable from true certificates by exploiting a collision vulnerability in the

MD5 algorithm [Sotirov et al., 2008]. Due to these failings, if a hashing function is not

collision resistant, it is not considered safe or secure for cryptographic use. Formal collision

attacks use knowledge of how a specific hash function works to find messages M and M’

such that M≠ M’ but H(M’) = H(M’). When finding collisions to prove that a hash function is

not secure the actual content of the colliding messages is irrelevant. It must simply be

proven that colliding messages exist and can be generated in non-trivial polynomial time in

order to prove a lack of collision resistance, and therefore a lack of security. For MD4, the

brute force attack is 2128 hashing operations, but due to the birthday paradox the trivial

attack is considered to be ~264 hashing operations.

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 7

4 Differential Cryptanalysis

All three of the attacks discussed in this paper rely on differential cryptanalysis to find

weaknesses in the MD4 hashing algorithm. In this section, we will give a brief outline of

what differential cryptanalysis is and how it can be related to attacking MD4 in general

terms.

Differential cryptanalysis is centered around the differences between the input

messages and resulting output messages of a cryptographic function. This is often because

there are some series of steps in the algorithm that can be predicted or adjusted for by

crafting specific inputs for the algorithm to process. The process of determining whether or

not the probabilities that given input results in a specific output are non-uniform, and if so,

how they can be exploited, is the core concept of differential analysis [Heys, 2002].

This technique is very valuable when it comes to evaluating hashing functions like

MD4. In order for hashing functions in this family to create short hash values for variable

length input strings, they rely on their internal compression functions which use small

internal buffers. By looking at these compression functions and performing differential

analysis on the individual steps or groups of steps in them, it may be shown to have

predictable results for specific inputs [Dobbertin, 1996]. If the difference between an input

message and an output message can be shown to have non-uniform probability, then the

output for messages with those characteristics can be predicted. Because collision attacks

are interested in finding a pair of messages with no difference in their hashes, differential

analysis is used to analyze relative differences between two messages and their outputs.

The difference between two input messages to a function is called the input difference and

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 8

the difference in the resulting outputs is called the output difference. If an input difference

can be shown to result in an output difference of zero with some non-negligible probability

in polynomial time, then a collision attack has been found. The input difference that was

used for the attack can then be used to craft pairs of input messages that collide. These

attacks only make use of one block long messages and ignore padding. Using one block long

messages is done to make analysis easier and is valid as it merely restricts inputs to a

subset of the message space for MD4. Ignoring padding can also be done because padding is

uniform for two messages of the same length, and is appended to the message, therefore it

has no impact on differential attack as it will be applied uniformly to already colliding

messages.

5 Notation

In order to help describe these collision attacks, we will define a standardized set of

notation for various aspects of MD4 used in attacks. All words are big endian at the byte

level. Let the following be defined:

1. M = (m0, m 1, ..., m15), M’ = (m’0, m’1, ..., m ’15) ∊ {0, 1}512 | M ≠ M’ are input messages
2. ΔM = M’ - M is the input difference
3. ai, bi, ci, di and a’i, b’i, c’i, d’ i are the values of the A, B, C, D buffer words after the ith

step for inputs M and M’ respectively
4. Δi = {ai - a’i, bi - b’i, ci - c’i, d i - d’ i} is the difference in the M and M’ buffer words after

the ith step
5. qi, q’i are the results of the operation performed during the ith step for inputs M and

M’ respectively (i.e, for Step 1 this is the result of: (A + F(B, C, D) + X[0]) <<< 3)
6. Δqi = qi - q’i is the difference in the operation results of step i for M and M’

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 9

6 Dobbertin

The first collision attack against all three rounds of MD4 was introduced by Dobbertin in

1996. In this section, we discuss the specifics of this attack and the theory behind it as

presented in his paper [Dobbertin, 1996].

Dobbertin’s differential analysis of the MD4 algorithm revealed a weakness in the

differential paths using only a small difference in input messages. The message difference

that he used to cause a collision was:

 Δm12 = 1
 Δmi = 0, ∀i ≠ 12 (1)

The reason that the 12th message word was chosen to differ is because m 12 appears

exactly once in each round of the compression function, in the 13th, 20th, and 36th steps

[Dobbertin, 1996]. Since the message blocks that are applied for all steps past 36 will be the

same for both messages, if the buffer states are the same after step 36, the states will be the

same after step 48. The resulting output hashes will also be the same because the final

addition of the initial values is uniform for both messages. Therefore, ifΔ36 = {0, 0, 0, 0}

and equation (1) holds, it follows that Δ48 = {0, 0, 0, 0} and the hashes for M and M’ will

collide.

6.1 Inner-Almost Collisions

In order to ensure thatΔ36 = {0, 0, 0, 0}, Dobbertin outlines what he calls an “inner-almost

collision”. He defines this as the execution of steps from 13 to 20 where the resulting

difference Δ20 is equal to {0, 224, -24, 0} [Dobbertin, 1996]. This is a specially chosen

difference that enables satisfying Δ36 = {0, 0, 0, 0}. It is effectively controlling the

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 10

differential path between the first two uses of m12 so that its final use will result in the all

zero difference needed for a full collision. The inner collision is ensured by creating a

system of equations representing the different operations performed in these steps and the

Δqi (13 ≤ i ≤ 20), that result inΔq19 = -24 andΔq20 = 224 (which satisfies the inner-almost

collision requirement). q13 and q’ 13 are set to predefined values and the other necessary q i

are randomized, then the system is solved. Once all the qi values are calculated, then the mi,

m’i that would be used to generate those qi are calculated using the inverse of the step

operations. These values are m12, m’12, m13, m 14, m15, m0, m4, and m 8. At this point, the

inner-almost collision is satisfied.

6.2 Completing the Messages

Once an inner-almost collision has been found, the rest of the of the nine mi not already

defined need to be calculated. In order for the collision to be valid, we need to ensure that

the values of a12, b 12, c 12, d12 that are inputs for step 13 need to be the actual values

computed after step 12. To do this, the attack works backwards from round 12 towards the

IV so that the assumptions made for all previous calculations remain valid. The first step in

this reversal is randomly assigning m1, m 2, m3, and m 5. From there, m11, m 10, and m9 can be

assigned values by reversing steps 12, 11, and 9 respectively using the value ofΔq13 as a

starting point. Finally, the previously fixed value of m8 can be managed by setting specific

values for Δq8, Δq 7, and Δq 6, then continuing to work backwards, applying each step in

reverse to get the remaining m8, m 7, and m6. At this point, all mi are defined such thatΔ48 =

{0, 0, 0, 0}. We can apply the message difference to get the colliding message M’ = M +ΔM,

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 11

and are thus able to output (M, M’) which forms a collision pair. This attack does not

succeed with a probability of 1, however, which is discussed in the next section.

6.3 Success Probability and Theoretical Complexity

If the attack is against the compression algorithm alone, the attacker is allowed to use any

initial value (IV) instead of the one defined by MD4 [Dobbertin, 1996]. In this scenario the

nine mi that were not fixed as part of the inner-almost collision get assigned randomly,

because it is trivial to work backwards from step 12 to step 1 to determine the an arbitrary

initial value. This creates uncertainty in the attack success due to the previous assumption

that the difference from the inner-almost collision propagates correctly through to the end

of step 36. This is not a valid assumption because of the fact that these randomized mi

values are factored into the buffers during steps 21 through 36. For each of these steps, the

probability that Δi results in the correct values assuming Δi-1 is correct is influenced by

the properties of the functions G and H as well as the values of the randomized message

words. The overall probability that the attack succeeds is therefore defined as:

r[Δ is correct | Δ is correct] 2∏
36

i = 21
P i i−1 = −30.11 [Dobbertin, 1996]

However, this is based on the assumption that we do not need to work backwards

towards the true MD4 IV. Dobbertin does not outline what the theoretical probability is if

reconciling the IV is necessary in the context of the complete MD4 scheme, therefore it is

not the probability of a full attack. Experimentally, Dobbertin found that the probability

was actually closer to 2-22 for a single trial successfully generating a collision using the full

MD4 scheme and the proper IV [Dobbertin, 1996].

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 12

In terms of complexity, Dobbertin [1996] defines one operation as the evaluation of

a single equation as all of the equations used in the attack are an arithmetic reordering of

the functions used by MD4, and therefore equivalent to one MD4 step. He determined that a

single trial would take approximately 16 steps worth of computation, equivalent to one

third of a single MD4 compression. When factoring in the probability of a single trial

successfully generating a collision, he posed that the runtime complexity of the attack is

approximately equivalent to 220 MD4 compression operations [Dobbertin, 1996].

In light of the fact that the runtime complexity of the attack is well under the 264

hashing operations that are required for the birthday attack and that it has a high

probability of success within that time, Dobbertin was able to conclude that MD4 is not

collision resistant.

7 Wang et al.

In 2005, Wang et al. put forth a paper that proposed a new message difference for MD4 that

aimed to reduce the runtime complexity and increase the probability of finding a collision

when compared to Dobbertin’s attack. In this section, we discuss the specifics of this attack

and the theory behind it as presented in their paper [Wang et al., 2005].

7.1 Message Difference

Wang’s attack differs from Dobbertin’s in that it uses differences in multiple input words to

take advantage of two complete collisions within the MD4 compression algorithm, and uses

specific modification of the messages to fulfill certain conditions. These two characteristics

allow for an increased probability of success as it does not rely on randomness to resolve

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 13

inner collisions into true collisions. The message difference that they proposed that meet

these characteristics is as follows:

 Δm1 = 231

 Δm2 = 231 - 228
 Δm12 = -216

 Δmi = 0 ∀i = 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15

The two inner collisions exploited are one between steps 2 and 25, and another

between steps 36 and 41. This implies thatΔ25 =Δ41 = {0, 0, 0, 0}. For steps 42 to 48, the

message words mi that are used are m9, m 5, m 13, m3, m11, m7, and m15, all of which are equal

for both M and M’. Therefore, all operations on the buffer after step 41 are uniform for both

M and M’, and the hashes will collide with a high probability. The differential path for the

second inner collision is below:

Figure 1. Second inner collision for attack by Wang et al. [Sasaki et al., 2007]

In order to ensure that the inner collisions are satisfied, Wang et al. provide a table

of bit conditions for the values of Δqi during the intermediate steps (see Table 6 in [Wang

et al., 2005]). These conditions are based on the differential path and the characteristics of

the functions F, G, and H. Initially, M is chosen randomly and the pair (M, M’ = M +ΔM) is

calculated. The probability that the conditions are satisfied and (M, M’) form a colliding pair

Zach Havens (7671770), Vanessa Reimer (7691114)

Second Inner Collision

Step
Δi = {Δai, Δbi, Δci,

Δdi}
Δmk Δqi

36
37
38
39
40
41

 0 231 0 0
 0 231 231 0
 0 231 231 0

 0 231 231 0
 0 0 231 0
 0 0 0 0

-216

-228 + 231

0
0
0

231

231

231

0
0
0
0

Collision Attacks on MD4 14

given a uniform M is 2-122. In order to use this message difference to proper effect, Wang et

al. use two types of message modification that they call “single-step modification” and

“multi-step modification” in order to increase the probability of a collision [Wang et al.,

2005].

7.2 Message Modification

The first optimization made by this attack to increase success probability is modifying the

message M in order to satisfy all the bit conditions for the first round chaining variables

Δq2 throughΔq 16. These modifications are simply performing the bit operations required

to set the necessary bit conditions to those chaining variables, or “single-step modification”.

Once those conditions are satisfied, a significant portion of the randomization has been

controlled, increasing the probability of the new resulting pair (M, M’ = M +ΔM) colliding

to 2-25 [Wang et al., 2005].

In order to increase the probability even further, multi-step modification is done.

This is a process outlined to satisfy some of the bit conditions for the second round

chaining variables, Δq17 through Δq 32. These modifications require more operations due

to the fact that the changes they make to M can cause the bit conditions for the first round

to become unsatisfied. Therefore, in order to account for changes, multiple mi need to be

modified directly, and the impacted Δqi must be recalculated in order to satisfy these

complex conditions.

Many of the multi-step modifications are outlined as part of the attack, but not all.

Wang et al. [2005] claim that almost all conditions in rounds 1 and 2 can be satisfied

through approximately 22 multi-step modifications. These adjustments increase the

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 15

probability of generating a successful collision (M, M’ = M + ΔM) to somewhere in the

approximate range of 2-6 to 2-2 [Wang et al., 2005]. The exact value is be determined by the

round 3 conditions that are not satisfied manually, as they must be satisfied randomly

when generating the unmodified M. The reason that these conditions are not set manually

is because they are computationally expensive, as changing them requires modifying many

more mi and Δq i in order to maintain previously satisfied conditions.

7.3 Theoretical Complexity

All of the non-randomization operations needed to perform this attack are within the

message modification portion of the process. The modifications for Δq2 to Δq16 are

considered trivial due to the single operation to perform them (some combination of

bitwise operators). According to Wang et al. [2005], each of the ~22 multi-step

modifications only needs “about a few” step operations, and they claim that the total

modification time is ≈2 MD4 computations worth of operations for a single trial. Given that,

and the worst case 2-6 probability of a trial succeeding, this attack should generate a

colliding pair (M, M’) in 28 operations on average [Wang et al., 2005]. This represents a 213

hashing operation decrease in complexity over Dobbertin’s attack.

8 Sasaki et al.

In 2007, Sasaki et al. proposed a new inner collision and new message difference for

finding MD4 collisions. These improvements enabled an even more efficient attack to be

produced, as prior attacks relied on Wang et al.’s inner collision and message difference. In

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 16

this section, we discuss the specifics of this attack and the theory behind it as presented in

their paper [Sasaki et al., 2007].

8.1 New Inner Collision and Message Difference

An efficient message difference of a collision attack on MD4 is dependent on an efficient

inner collision in the third round. This is because following the differential path during the

third round is computationally expensive in comparison to following the differential path

during the first and second rounds [Sasaki et al., 2007]. At minimum, one message

difference must occur in the third round since the attack requires colliding messages to be

different. Sasaki et al. constructed an inner collision that uses just one message difference

in the third round in the MSB of Δqi, summarized in Figure 2. Steps 34, 35, 36, and 37

cancel out the difference introduced by step 33.

Figure 2. New inner collision proposed by Sasaki et al. [Sasaki et al., 2007]

The message difference used to exploit this is as follows:

 Δm0 = 228

 Δm2 = 231
 Δm4 = 231
 Δm8 = 231
 Δm12 = 231

 Δmi = 0 ∀i = 1, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15

Zach Havens (7671770), Vanessa Reimer (7691114)

New Inner Collision

Step
Δi = {Δai, Δbi, Δc i,

Δdi}
Δmk Δqi

33
34
35
36
37

 231 0 0 0
 231 0 0 0
 231 0 0 0

 231 0 0 0
 0 0 0 0

228

231

231
231
231

231

0
0
0
0

Collision Attacks on MD4 17

Sasaki et al. also proposed a differential path construction algorithm that they used

to determine the path for their new message difference. The full differential path found, the

conditions generated to follow the path, and the message modification procedures for each

condition are found in [Sasaki et al., 2007] in Tables 7, 8, and 9 through 20, respectively.

As with Wang et al.’s attack, message modification is applied to randomly generated

messages in an attempt to satisfy the sufficient conditions. Because of the reduced number

of steps involved with the third round collision, only 1 bit difference is needed in the third

round instead of 2, and thus fewer conditions are needed that cannot be guaranteed to be

satisfied. Therefore, a single trial succeeds in finding a colliding message pair (M, M’ = M +

ΔM) with higher probability than with Wang et al.’s attack due to decreased reliance on

randomization. Sasaki et al. [2007] do not provide a numerical success probability for

which their algorithm finds a collision, only stating that it is “with high probability”.

8.2 Theoretical Complexity

Based on the pseudocode provided in their paper, it appears a collision is guaranteed with

enough repetition of the final message modification to satisfy the last sufficient condition.

This pseudocode has three main components, each of which is outlined below along with

the presented complexity.

First, for 1 ≤ i ≤ 16, the value of qi is randomly generated and changed to satisfy all

its conditions. Once satisfied, mi-1 is computed as (q i >>> si) - q i-4 - F(qi-1, qi-2, q i-3). Both

random number generation and modifying qi to satisfy all conditions take O(1) time.

Calculating mi-1 requires almost 1 MD4 step, therefore this component has a total runtime

of 16 MD4 steps [Sasaki et al., 2007].

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 18

Second, for 17 ≤ i ≤ 29, qi is computed as qi = (qi-4 + G (q i-1, qi-2, q i-3) +mk+ 5A827999)

<<< si . Then for each bit position j of qi, message modification is applied if the condition on

qi,j is not satisfied. Computation of each qi requires 1 MD4 step. 11 conditions and their

corresponding message modification procedures exist over these values of i, each requiring

less than 3 MD4 steps [Sasaki et al., 2007]. Each of these conditions is already satisfied with

probability 1/2 due to the randomization of M, therefore (3 ⋅ 11) / 2 = 16.5 MD4 steps are

needed [Sasaki et al., 2007]. Thus, a total of 29.5 MD4 steps are computed in this stage.

Third, q30, q 31, and q32 are computed as q i = (qi-4 + G (qi-1, qi-2, qi-3) +m k+ 5A827999)

<<< si, and q 33 = (q29 + H (q 32, q31, q30) +m 0+ 6ED9EBA1) <<< 3. If the condition of q33,31 = 0 is

not satisfied, message modification is applied and this component is repeated. Again, the

computation of each qi requires 1 MD4 step. Then, the condition of q33,31 = 0 can either be

true or false. If true, no further steps are taken. If false, message modification of less than 1

MD4 step occurs and this component is repeated. Sasaki et al. claim this condition can be

expected to be met with at most 2 attempts [Sasaki et al., 2007]. Therefore, the complexity

of this component is the average of these two scenarios, i.e., (4 + 9) / 2 = 6.5 MD4 steps

[Sasaki et al., 2007].

Finally, the resulting message is defined as M, and M’ = M +ΔM. This computation is

O(1). Bringing it all together, this attack is expected to take 16 + 29.5 + 6.5 = 52 MD4 steps

in total. As one MD4 operation takes 48 MD4 steps, the complexity is less than 2 MD4

operations. Even if all conditions in the second component of the attack are not satisfied

and require message modification, the complexity is still below 2 MD4 operations at 68.5

MD4 steps.

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 19

9 Implementation of Algorithms

To gain a more thorough understanding of these three attacks and enable us to compare

their actual performance, we set out to implement each algorithm. A publicly available

implementation of Wang et al.’s attack was found online at [Stach, 2006]. Using this code as

a template, we developed implementations of Dobbertin’s and Sasaki et al.’s attacks based

off of the pseudocode found in their respective papers. All three implementations are in C.

A bash script was also written to easily confirm collisions of the MD4 hashes of outputted

message pairs.

Unfortunately, due to various factors, we were unable to successfully generate

colliding message pairs within the timeline of this project. We discuss the implementation

of each algorithm separately in the following sub-sections.

9.1 Dobbertin

The primary issue encountered with the implementation of the Dobbertin attack is finding

an inner-almost collision. Dobbertin’s outline of the attack process defines the generation

of these collisions as a “continuous approximation” towards the necessaryΔ20 = {0, 224, -24,

0}. Step 2 of this process involves randomizing bits of the chaining variables q15 through q 20,

using these temporary values to recalculate the other chaining variables in the

inner-almost collision, and testing the 4 most significant bits of an equation representing

Δq15 to see if they equal 0. If they do, the new values of q 15 through q20 are set, and the

process is repeated for the next 8, 12, 16, …, 32 most significant bits until the equation is

entirely satisfied [Dobbertin, 1996]. Throughout all of our testing and various

interpretations of the pseudocode, including randomizing the same bit in all chaining

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 20

variables and restarting the process every time the left x bits of the equation were not

satisfied, we were unable to complete this step of the process. Allowing the program to run

for long periods of time (>8 hours) did not solve the issue either. When the program is run

in its current state the output will indicate when a certain number of bits in the equation

are satisfied. It will also indicate when it restarts the entire collision generation process

after a certain number of attempts to solve the equation forΔq15, printing the values of the

state buffers for M and M’ at that time before restarting.

We believe that this issue is because of a misinterpretation of the vague instructions

given in the pseudocode, which is hard to decipher as the need for, and value of, the

continuous approximation is not given in any detail. This information would allow us to get

a better understanding of how it fits in the context of the attack and discern the true

interpretation. With that information, or time for more trial and error for various

interpretations of the relevant step, we believe we would be able to successfully implement

Dobbertin’s attack.

9.2 Wang et al.

As mentioned above, a publicly available implementation of Wang et al.’s attack was found

at [Stach, 2006]. It has been modified only to match the notation found in this paper, and

has been included along with our implementations.

9.3 Sasaki et al.

The main obstacle in completing the Sasaki et al. implementation is clarity in components

of the algorithm, due to typos or breverity.

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 21

There are two separate occasions where a condition specified for the new inner

collision in Table 8 of [Sasaki et al., 2007] does not match the correlating modification

procedure provided in the paper. The first case of this is for the chaining variable b18,28. In

the inner collision table, the condition specified is ‘c’, or b18,28 = b 16,28. However, the

correlating modification procedure (Table 12 of [Sasaki et al., 2007]) specifies the

condition as b18,28 = 0 instead. The second case of this is for the chaining variable b 22,31. In

the inner collision table, the condition specified is ‘c’, i.e., b22,31 = b 20,31. However, the

correlating modification procedure (Table 18 of [Sasaki et al., 2007]) specifies the

condition b22,31 = b 21,31.

The final modification procedure for the condition b33,31 = 0 is provided in Table 20

of [Sasaki et al., 2007]. It is unclear as to whether all extra conditions for the various values

of i should be set all at once, or one at a time. In the actual procedure steps, it is also unclear

as to if the notation for i - 3 and i + 16 is mod 32, or if values outside of 0 - 31 are ignored.

With more time to experiment and figure out the intentions of these components,

we are confident a successful implementation of Sasaki et al.’s attack could be achieved.

10 Conclusion

In March 2011, RFC 6150 stated RFC 1320 as obsolete [Turner & Chen, 2011]. This is due in

part to fact that MD4 is not collision resistant, as shown by the three differential attacks

studied in this paper. Such attacks continue to gain efficiency through iterative

improvements. The implementation of Wang et al. provided by [Stach, 2006] generates a

collision in mere seconds on a standard personal computer. A complete implementation of

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 22

Sasaki et al.’s algorithms would produce a colliding message pair in even less time based on

its theoretical complexity. As a result, MD4 should not be used when a collision resistant

hashing function is needed. Despite MD4 being of little use today, the differential

cryptanalysis of these attacks is beneficial and can be related to more recently developed

hashing functions.

Zach Havens (7671770), Vanessa Reimer (7691114)

Collision Attacks on MD4 23

References

Boer, Bert Den, and Antoon Bosselaers. "An Attack on the Last Two Rounds of MD4."
Advances in Cryptology — CRYPTO ’91 Lecture Notes in Computer Science (1992): 194-203.
Print.

Dobbertin, Hans. "Cryptanalysis of MD4." Fast Software Encryption Lecture Notes in
Computer Science (1996): 53-69. Print.

Heys, Howard M. "A Tutorial on Linear and Differential Cryptanalysis."Cryptologia 26.3
(2002): 189-221. Print.

Rivest, Ronald. "RFC 1320 - The MD4 Message-Digest Algorithm." RFC 1320 - The MD4
Message-Digest Algorithm. Network Working Group, 1992. Web. 17 Nov. 2015.
<https://tools.ietf.org/html/rfc1320>.

Rivest, Ronald. "The MD4 Message Digest Algorithm." Advances in Cryptology-CRYPT0’ 90
(1991): 303-11. Print.

Sasaki, Yu, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. "New Message Difference for
MD4." Fast Software Encryption, Lecture Notes in Computer Science (2007): 329-48. Print.

Sotirov, Alexander, et al. "MD5 Considered Harmful Today, Creating a Rogue CA
Certificate." 25th Annual Chaos Communication Congress. No. EPFL-CONF-164547. 2008.
Print.

Stach, Patrick. "MD5 and MD4 Collision Generators." Bishop Fox, 2006. Web. 25 Nov. 2015.
<http://www.bishopfox.com/resources/tools/other-free-tools/md4md5-collision-code/>.

Turner, S., and L. Chen. "RFC 6150 - MD4 to Historic Status." RFC 6150 - MD4 to Historic
Status. Internet Engineering Task Force, 2011. Web. 9 Dec. 2015.
<https://tools.ietf.org/html/rfc6150>.

Wang, Xiaoyun, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. "Cryptanalysis of the
Hash Functions MD4 and RIPEMD." Lecture Notes in Computer Science Advances in
Cryptology – EUROCRYPT 2005 (2005): 1-18. Print.

Zach Havens (7671770), Vanessa Reimer (7691114)

