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1 Abstract

In this project, we have implemented the Gift Wrapping/Jarvis March (GW),
Graham’s Scan, divide and conquer (D&C), and Chan’s algorithms for comput-
ing the convex hull of a point set. After implementing the algorithms we tested
them with randomly generated point sets of varied input sizes and distributions.
Next, we analyzed the data and compared our experimental run times with the
expected runtimes given the algorithms’ theoretical bounds. We found that the
divide and conquer algorithm performed better than expected, while Chan’s
algorithm performed much worse than expected. Gift wrapping and Graham’s
scan performed as expected for each input. Finally, we present a profile on
our implementation of Chan’s algorithm and a discussion of why the algorithm
didn’t perform well.

2 Introduction

The convex hull of a set of n points P is defined as the smallest possible convex
polygon such that all points in P are either contained within the polygon or on
its boundary [1]. After briefly touching on the topic in class, we were motivated
to learn more about convex hulls and felt that implementing algorithms to solve
the problem would be the best way to do so. We also anticipated that learning
different ways to determine convex hulls would expose us to concepts that might
help us with future algorithms and problems. In addition, we were curious to
explore how the theoretical run times of these algorithms compared to their
practical run times. To meet these goals, we implemented convex hull algo-
rithms and experimentally measured their performance. We implemented four
convex hull algorithms: Gift Wrapping/Jarvis March, Graham’s Scan, divide
and conquer, and Chan’s Algorithm. Following implementation, we conducted
an experiment where we ran the algorithms with varied input sizes and distri-
butions of the input points. Finally, we analyzed the results to compare the
theoretical and practical run times of the algorithms.



3 Related Work

Chadnov and Skvortsov [2] also compared the experimental runtimes of various
algorithms with diverse input sets. In their work they compared the Jarvis
march, Graham’s scan, and divide and conquer algorithms just as we did. In
contrast, they did not examine Chan’s algorithm, but they did look at Andrew’s
algorithm and the Quickhull algorithm. They concluded that the best algorithm
depends on the distribution of points used.

4 Algorithms
4.1 Gift Wrapping Algorithm

The gift wrapping algorithm, also known as the Jarvis march algorithm, was
discovered independently by Chand and Kapur in 1970 [3] and R.A. Jarvis in
1973 [4]. The algorithm starts by finding the leftmost point and then iteratively
choosing the next point such that all other points are to the right side of the line
between the current and next point. The algorithm is called the gift wrapping
algorithm because the hull is formed by “wrapping” it around the point set.
The algorithm has O(nh) complexity, where h is the size of the hull.

4.2 Graham’s Scan

Graham’s scan algorithm was introduced by Ronald Graham in 1972 [5]. The
algorithm represents the working hull as a stack. It starts with an extreme point
and sorts all the other points according to the angle they make with that initial
extreme point. It then iterates through all of the sorted points, popping points
off of the stack until the angle formed between the current and top points form
a consistent winding (clockwise or counter-clockwise), then adding the current
point to the stack once the condition is satisfied. The resulting stack contains
the hull and is constructed in O(nlogn) time.

4.3 Divide and Conquer

In 1977, Preparata and Hong 6] applied a standard divide and conquer method
to the convex hull problem. First, the algorithm sorts the point set by either
the x or y coordinates. Then the sorted point set gets divided into two halves
and the convex hull of each half is found. This is done recursively until a point
set contains 3 or fewer points and hull construction is O(1). Merging is done by
first finding either the upper and lower tangents between the two hulls (if the
point set is sorted by = coordinates) or the left and right tangents between the
two hulls(if the point set is sorted by y coordinates). The merged hull is the
two original hulls, and the tangent lines, minus the points on the original hulls
on the interior of the tangents. The merge can be done in linear time, and so
the overall hull construction takes O(nlogn).



4.4 Chan’s Algorithm

Chan’s algorithm was outlined by Timothy Chan in 1996 |7]. Chan’s algorithm
combines the use of an O(nlogn) algorithm such as divide and conquer or
Graham’s scan with the gift wrapping algorithm. Chan’s algorithm first divides
the input into m subsets of size n/m where m approximates h. For each subset,
hulls are calculated using the O(nlogn) algorithm. It then combines the subset
hulls using a modified version of the gift wrapping algorithm in O(logn) time by
looking for m contiguous extreme points from the subset hulls. If a complete hull
is formed then it is returned. Otherwise, m is increased and a new construction
attempt begins. The success of the algorithm depends on the accuracy of m,
so the algorithm uses a squaring scheme of m = 22" where ¢ ranges from to
log, log, n. With this squaring scheme, the algorithm takes O(nlogh).

5 Method

5.1 Implementation Details

The algorithms were implemented in Python 3.8 and leveraged the NumPy li-
brary for calculations. Our code can be found on GitHub: https://github.com/
zhavens/convex_hull. Most of our algorithms did not differ significantly from
their descriptions in their original papers. For the gift wrapping algorithm,
the approach was inspired by Jarvis’s paper [4], pseudocode on Wikipedia [§],
and an implementation of the algorithm in Java by Tushar Roy [9]. The im-
plementation of Chan’s algorithm was aided by a tutorial by Pankaj Sharma
[10]. Our Chan’s implementation enabled easy configuration of the choice of
sub-hull construction between Graham’s scan and divide and conquer. In the
end, experimental results were generated primarily with divide and conquer as it
performed better practically. Additionally, the implementation of Chan’s does
include the suggested optimization that points that are not part of a sub-hull can
be discarded when generating the next set of sub-hulls as they are guaranteed
to not be extreme.

5.2 Divide and Conquer Merge

For the divide and conquer algorithm, we used a different merging algorithm
than the one presented by Preparata and Hong [6] as the merge algorithm in
the original paper is “sketchy” according to Chan [11] and does not describe all
of the cases required for a full implementation. We instead used a technique
outlined in MIT’s OpenCourseWare notes [12] and in O’Rourke’s Computational
Geometry in C [13] to merge the hulls.

To find the upper tangent, the merge algorithm first finds the vertical line
centered between the rightmost point of the left hull L and the leftmost point of
the right hull R. It then sets the current tangent endpoints to be the rightmost
point of the left hull at index ¢ and the leftmost point of the right hull at index
j. It then iteratively “walks up” the hull until the current endpoints define the
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upper tangent. This is done by finding the next point in the left hull in counter
clockwise order L; ; and the next point on the right hull in clockwise order
Rjt1. A comparison is done between the intersections of the dividing vertical
line and 3 lines: (L;, R;), (L;, Rj11), and (L;—1, R;). If the intersection
between the vertical line and (L;, R;j41) is higher than the intersection between
the vertical line and (L;, R;), the j is incremented so R;i; becomes the next
current endpoint of R. If the intersection between the vertical line and the
line (L;_1, R;) is higher than the intersection between the vertical line and the
current endpoints, 7 is decremented and L;_; becomes the next current endpoint
in L. In either case, the loop is continued until the intersection of the vertical
line and the line (L;, R;) is maximized and the tangent is found. A similar
procedure is used to find the lower tangent, but the endpoints “walk down” the
hulls instead.

5.3 Input Data Sets

We used four different distributions in order to give a varied set of inputs to
the algorithms: normal, uniform, clustered, and circular. Normal and uniform
distributions were generated using standard randomization algorithms. For the
clustered input sets we defined 100 centers uniformly within a unit square, and
placed an n/100 points around each center with uniform angle and distance from
it. The circular inputs have points evenly distributed around the circumference
of a unit circle, with very small random perturbations to keep points in general
position while still ensuring that every point was extreme.

Input sets of 50K, 100K, 250K, and 500K points were generated for each of
the normal, uniform, and clustered distributions. The size of the constructed
hulls for these inputs varied from 13 to 45 points. Notably, for normally dis-
tributed inputs h was always less than or equal to logn. Input sets were lim-
ited to 500K points to allow for reasonable runtimes on available hardware.
For the circular distribution, only sets of 25K points were generated to allow
output-sensitive algorithms to construct hulls within a reasonable amount of
time. ”"Boxed” inputs were also generated at the highest point count for distri-
butions where a bounding box of four points was added to analyze the perfor-
mance of the algorithms when the size of the hull is minimized. Examples of
generated input sets can be found in Figure

5.4 Environment

Code was run using the standard Python 3.8 interpreter on a Ubuntu 20.04
virtual machine (VM) managed by a machine running the XCP-Nng hypervisor
in its bare-metal configuration. The VM was given exclusive access to 4 logical
cores of an Intel Core i3-10110U processor and 16GB of memory.



(a) Clustered (b) Normal

Figure 1: Input Types

6 Results
6.1 Expected Results

Based on theoretical upper bounds, we expected that Graham’s scan and divide
and conquer would perform similarly since they are both O(nlogn). We also
expected that for our input sets with small hulls, gift wrapping would perform
better than these two algorithms, but that for input sets with large resulting
hulls, gift wrapping would perform poorly compared to these two algorithms,
since gift wrapping is O(nh). Since Chan’s algorithm is O(nlogh), we ex-
pected it to have the fastest runtime for all inputs, although with only marginal
improvement over gift wrapping when hull sizes were small (as in the boxed
inputs).

6.2 Measured Results

Results were measured by a difference in system clock time immediately prior
to calling the appropriate hull construction algorithm to the time immediately
after completion. Any additional steps such as validating the hull or writing
any output were performed after the time measurement was completed. Results
are shown in tabular format in Figure [2| and graphical format in Figure
The system clock has nanosecond precision, although results are reported to
hundredths of a second as that was the most significant digit. All results for
Chan’s algorithm were measured using divide and conquer to calculate the sub-
hulls during execution, except where noted otherwise.

Additionally, each algorithm was profiled when run against the 500K point
clustered input without bounding box. Data was collected using the built-
in cProfile module in order to get per-method runtimes and invocation counts
during hull construction. Profile charts with annotations can be found in Figure
[ and results are discussed below.

¢) Uni (d) Circle (w/ Box)



n(h) Gift-Wrap | Graham’s | D&C | Chan’s n(h) Gift-Wrap | Graham’s | D&C | Chan’s
50K (31) 1.20 0.66 0.23 0.72 50K (15) 0.57 0.66 0.23 0.72
100K (37) 2.83 1.45 0.54 1.79 100K (13) 0.99 1.44 0.52 1.53
250K (45) 9.06 3.56 1.60 4.52 250K (18) 3.62 3.49 1.67 4.64
500K (38) 14.90 7.51 3.53 9.29 500K (18) 7.18 7.02 3.45 9.28
500K (4) 1.73 7.12 3.61 11.08 500K (4) 1.72 7.31 3.59 7.82
(a) Clustered (b) Normal
n(h) Gift-Wrap | Graham’s | D&C | Chan’s
50K (31) 1.24 0.69 0.23 0.92 n = 25K | Gift-Wrap | Graham’s | D&C | Chan’s
100K (28) 2.28 1.37 0.54 1.90 Ordered 515.69 0.32 0.16 | 12.27*
250K (33) 6.53 3.55 1.65 4.67 Random 500.35 0.33 0.16 | 13.76*
500K (37) 14.47 7.05 3.64 9.63 Boxed (4) 0.08 0.34 0.15 0.95
500K (4) 1.71 7.17 3.52 6.90 (d) Circle
(¢) Uniform
* Runtimes for Chan’s using Graham Scan instead of D&C for sub-hull construction.
Figure 2: Runtimes (s)
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Figure 3: Runtime Chart




6.3 Graham’s and Gift Wrapping Results

Graham'’s algorithm generally performed better than the gift wrapping algo-
rithm, with a few exceptions. With normally distributed points the two algo-
rithms performed similarly due to the fact that h ~ logn for those inputs, while
for input sets with a bounding box where h < logn gift wrapping performed
better. These results are expected since the gift wrapping is O(nh) and Graham
scan is O(nlogn).

6.4 Divide and Conquer Performance

Despite having an upper bound that was theoretically equal to Graham’s scan
and worse than Chan’s, the divide and conquer algorithm consistently performed
best. This is due in part to the fact that the sorting done by our implementation
of Graham'’s sorts points by angle relative to an arbitrary extreme point while
the divide and conquer implementation sorts by x-coordinate. This eliminates
the more expensive angle calculations, as shown by the blue boxes in Figures
and As well, the merge takes O(n) in the worst case, but we hypothesize
that it is taking less time than that practically because the algorithm would
only need to consider the “inner” points as it walks up/down the hulls.

6.5 Chan’s Disparity

Chan’s algorithm performed significantly worse than expected based on its the-
oretical complexity. This is less surprising for circular input sets where h = n,
but Chan’s performed poorly even for inputs with bounding boxes added (where
h = 4). This was true regardless of whether Graham’s scan or divide and con-
quer was used to calculate sub hulls, with runtime always being longer than
the given algorithm would take to calculate the hull of the entire input set.
The version using divide and conquer were much faster practically than using
Graham’s as would be expected based on their relative performance.

To investigate why Chan’s performed so poorly, we profiled the number of
calls and amount of time it spent in each method it called in Figure Our
profiling shows that the majority of the time was spent calculating sub-hulls
(red outline) and finding the rightmost point in the hull using a binary search
(orange outline). Interestingly enough, each of the calculation of sub-hulls alone
and finding the rightmost points of said hulls took longer than the chosen sub-
hull algorithm would take to calculate the full hull (Figure red outline). This
means that completely eliminating the cost of one of those operations would not
reduce the runtime below that of the given O(nlogn) algorithm. The profiling
data shows that the correct number of invocations and the right sized inputs
were used to call Graham’s or divide and conquer in each case, so we believe
the poor performance to be due to constant-time operations introduced by the
implementation of those algorithms which is causing significant performance
impact given large number of invocations (O(n)).



ncalls tottime percall cumtime percall filename:lineno(function)
1 2423 2423 46.77 46.77 convex_hull py:200(gift_wrapping)
56900008 2214 3.884e-07 22.14 3.884e-07 <string>2{__eq_)
1 026 0.26 0.4033 0.4033 ~:0(=built-in method builtins sorted=)
300000 0.1434 2.867e-07 0.1434 2.867e-07 convex_hull.py:208(<lambda=)
(a) Gift Wrapping

ncalls tottime percall cumtime v  percall filename:lineno(function)
1 1.603 1.605 20.58 2058 convex_hull py:322(grahams_scan)
1 0.4519 04319 14.55 14.35 ~:0(=built-in method builtins sorted>)
500000 1612 30Se 14y 282605  conves_hull py-334(<lambda)
1400007/000008  3.224 376224& S 376555& ;ﬁ;giiiiﬁiﬁtfmy_umaLh.mlplement_a.rray_funcuum)
400000 0.5300 é'me' 6.626 L32Se- . iray function_internals>-2(norm)
200008 1.041 LO4e- 5457 36‘1 T8 . array_fonction_internals>-3(dot)
490000 1.827 éﬁé e | 5agg éf 57¢  linalg py-2363(norm)

(b) Grahams
ncalls tottime percall cumtime percall filename:lineno(function)
475711711 2458 2458 19.52 1952 convex_hull py:276(divide_and conquer)
262143 3.513 1.342-03 6.795 2.502e-05 ~:0(<built-in method builtins sorted=)
237855 1.832 7.7e-006 4.179 1.757e-05 convex hullpy:237(find_upper_tangent)
8927136 3.26 3.652e-07 3.26 3.652e-07 convex_hullpy:287(<lambda>)
237855 1572 6.609e-06 2082 254e-05 convex hull pv:259(find_lower tangent)
4354146 1.823 4.186e-07 1.823 4.186e-07 convex_hull.py:194(y_intesection)
3681068 1.516 2.669e-07 1516 2.669e-07 ~:0(=built-in method builtins len=)
487917 0.3432 7.0342-07 0.2014 1.847=-06 convex hull pv:49(vplot is_on)
237855 0474 1.0032-06 0.7527 3.165e-06 ~:0(<built-in method builtins max=)
475710 04152 8.742e-07 0.7441 1.564e-06 ~0(=method 'index' of list' objects>)
237835 04538 1.916e-00 0.7327 3.081e-06 ~:0(<built-in method builtins. min>)
(c) D&C

necalls tottime percall cumtime »  percall filename:lineno(function)
1 1351 1351 493 403 convex_hull py-349(chans_algorithm)
003290 9.819 0.885e-06 2361 2.377e-05  convex_hullpy:88(find_rightmost_in_hull)
1019620154688 305 2.554e-05 2179 0.0001409  convex_hullpy:276(divide_and conguer)
3397937 2.467 6.837e-07 6.342 1.763e-06  convex_hullpyv:49(vplot_is_on)
432466 2.797 6.468e-00 6.246 1.444e-03 convex_hull.py:237(find_upper_tangent)
10646477 5577 5.238e-07 5.577 5.238e-07  convex hullpy:33{find orientation)
18660775 4007 2.678e-07 4997 2.678e-07  ~:0(<built-in method builtins len>)
432466 2428 5.613e-06 4575 1.058e-05  convex_hull py:259(find lower_tangent)
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Figure 4: Profiling Data - 500K Clustered




7 Future Work
7.1 Additional Algorithms

There are a large number of convex hull construction algorithms that we have
not included in this study. Appropriate candidates include other output-sensitive
algorithms such as the Kirkpatrick-Seidel algorithm [14] or another O(nlogn)
algorithm with a degenerate case such as Quickhull [15].

7.2 Practical Improvements to Chan’s

As discussed in Section[6.5] Chan’s performed significantly worse than expected.
We consider 3 possible practical optimizations to improve runtimes:

e One optimization proposed by Chan [7] that was not implemented is to
reuse the existing sub-hulls and merge them instead of calculating new
larger sub-hulls when t is incremented. Using a linear-time merge algo-
rithm would reduce the complexity of the sub-hull step from O(nlogm)
to O(nlog(m/m')) time.

e The number of sub-hulls that need to be calculated can theoretically be
reduced with a heuristic-based selection of initial ¢ values to better ap-
proximate m. These could potentially be based loosely on the size of the
input set, or on known distribution characteristics.

e As large portion of the runtime for Chan’s algorithm is spent calculating
the rightmost point with a O(logn) binary search. There could be small
optimizations in the implementation of this algorithm efficient that could
significantly improve the runtime over many calls.

7.3 Parallelization

While given access to multiple cores, all of our implementations were single-
threaded and didn’t take advantage of paralellization. Day and Tracey [16]
applied paralellization to divide and conquer and saw significant improvements.
They also suggested that even more performance gains could be realized with
improved data passing methods. We also believe that paralellization could be
applied to Chan’s algorithm as constructions of each of the sub-hulls are inde-
pendent of one another. This would be true whether constructing from scratch
or merging existing hulls as discussed above. Given that the construction of the
sub-hulls is a significant portion of the runtime for Chan’s, we believe this could
be a significant practical improvement.

7.4 Preprocessing P

Golin and Sedgewick [17] proposed a method of preprocessing P in order to
reduce the number of points given to the hull construction algorithms. Their



algorithm works by removing points within a bounding box defined by 4 points
in P, as points within the box are guaranteed to not be extreme. This can be
done in O(n) time and reduces the input to O(y/n) points. This reduced set P’
can then be passed to any of the convex hull algorithms discussed in this paper
and will theoretically benefit the runtime as they have super-linear complexity.
We would like to practically test this with our chosen input distributions and
construction implementations.

8 Conclusion

In this paper, we have implemented and compared the practical and theoretical
runtimes of four convex hull algorithms: Gift Wrapping/Jarvis March, Gra-
ham’s Scan, divide and conquer, and Chan’s Algorithm. Our results show the
importance of examining practical runtimes in addition to theoretical bounds,
as we noticed a significant disparity in the expected and actual runtimes of the
Divide and Conquer algorithm and Chan’s algorithm, which performed better
and worse than their theoretical analysis would suggest, respectively.
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